45 research outputs found

    Caging Targets for Destruction

    Get PDF
    Intracellular bacterial pathogens engage in a tug-of-war with innate host defenses. In this issue of Cell Host & Microbe, Mostowy et al. (2010) identify a role for the septin family of cytoskeletal proteins in targeting intracellular Shigella to the autophagy pathway

    Mycobacterium marinum Escapes from Phagosomes and Is Propelled by Actin-based Motility

    Get PDF
    Mycobacteria are responsible for a number of human and animal diseases and are classical intracellular pathogens, living inside macrophages rather than as free-living organisms during infection. Numerous intracellular pathogens, including Listeria monocytogenes, Shigella flexneri, and Rickettsia rickettsii, exploit the host cytoskeleton by using actin-based motility for cell to cell spread during infection. Here we show that Mycobacterium marinum, a natural pathogen of fish and frogs and an occasional pathogen of humans, is capable of actively inducing actin polymerization within macrophages. M. marinum that polymerized actin were free in the cytoplasm and propelled by actin-based motility into adjacent cells. Immunofluorescence demonstrated the presence of host cytoskeletal proteins, including the Arp2/3 complex and vasodilator-stimulated phosphoprotein, throughout the actin tails. In contrast, Wiskott-Aldrich syndrome protein localized exclusively at the actin-polymerizing pole of M. marinum. These findings show that M. marinum can escape into the cytoplasm of infected macrophages, where it can recruit host cell cytoskeletal factors to induce actin polymerization leading to direct cell to cell spread

    Chronic Hepatitis B Finite Treatment: similar and different concerns with new drug classes

    Get PDF
    Chronic hepatitis B, a major cause of liver disease and cancer, affects over 250 million people worldwide. Currently there is no cure, only suppressive therapies. Efforts to develop finite curative HBV therapies are underway, consisting of combinations of multiple novel agents +/- nucleos(t)ide reverse transcriptase inhibitors. The HBV Forum convened a webinar in July 2021, and subsequent working group discussions to address how and when to stop finite therapy for demonstration of sustained off-treatment efficacy and safety responses. Participants included leading experts in academia, clinical practice, pharmaceutical companies, patient representatives and regulatory agencies. This Viewpoint outlines areas of consensus within our multi-stakeholder group for stopping finite therapies in chronic Hepatitis B investigational studies, including trial design, patient selection, outcomes, biomarkers, pre-defined stopping criteria, pre-defined retreatment criteria, duration of investigational therapies, and follow up after stopping therapy. Future research of unmet needs are discussed

    Efficacy of Sofosbuvir, Velpatasvir, and GS-9857 in Patients With Hepatitis C Virus Genotype 2, 3, 4, or 6 Infections in an Open-Label, Phase 2 Trial

    Get PDF
    Background & Aims Studies are needed to determine the optimal regimen for patients with chronic hepatitis C virus (HCV) genotype 2, 3, 4, or 6 infections whose prior course of antiviral therapy has failed, and the feasibility of shortening treatment duration. We performed a phase 2 study to determine the efficacy and safety of the combination of the nucleotide polymerase inhibitor sofosbuvir, the NS5A inhibitor velpatasvir, and the NS3/4A protease inhibitor GS-9857 in these patients. Methods We performed a multicenter, open-label trial at 32 sites in the United States and 2 sites in New Zealand from March 3, 2015 to April 27, 2015. Our study included 128 treatment-naïve and treatment-experienced patients (1 with HCV genotype 1b; 33 with HCV genotype 2; 74 with HCV genotype 3; 17 with genotype HCV 4; and 3 with HCV genotype 6), with or without compensated cirrhosis. All patients received sofosbuvir-velpatasvir (400 mg/100 mg fixed-dose combination tablet) and GS-9857 (100 mg) once daily for 6–12 weeks. The primary end point was sustained virologic response 12 weeks after treatment (SVR12). Results After 6 weeks of treatment, SVR12s were achieved by 88% of treatment-naïve patients without cirrhosis (29 of 33; 95% confidence interval, 72%–97%). After 8 weeks of treatment, SVR12s were achieved by 93% of treatment-naïve patients with cirrhosis (28 of 30; 95% CI, 78%–99%). After 12 weeks of treatment, SVR12s were achieved by all treatment-experienced patients without cirrhosis (36 of 36; 95% CI, 90%–100%) and 97% of treatment-experienced patients with cirrhosis (28 of 29; 95% CI, 82%–100%). The most common adverse events were headache, diarrhea, fatigue, and nausea. Three patients (1%) discontinued treatment due to adverse events. Conclusions In a phase 2 open-label trial, we found sofosbuvir-velpatasvir plus GS-9857 (8 weeks in treatment-naïve patients or 12 weeks in treatment-experienced patients) to be safe and effective for patients with HCV genotype 2, 3, 4, or 6 infections, with or without compensated cirrhosis

    Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions

    Get PDF
    Mental stress modifies both cholinergic neurotransmission and alternative splicing in the brain, via incompletely understood mechanisms. Here, we report that stress changes brain microRNA (miR) expression and that some of these stress-regulated miRs regulate alternative splicing. Acute and chronic immobilization stress differentially altered the expression of numerous miRs in two stress-responsive regions of the rat brain, the hippocampal CA1 region and the central nucleus of the amygdala. miR-134 and miR-183 levels both increased in the amygdala following acute stress, compared to unstressed controls. Chronic stress decreased miR-134 levels, whereas miR-183 remained unchanged in both the amygdala and CA1. Importantly, miR-134 and miR-183 share a common predicted mRNA target, encoding the splicing factor SC35. Stress was previously shown to upregulate SC35, which promotes the alternative splicing of acetylcholinesterase (AChE) from the synapse-associated isoform AChE-S to the, normally rare, soluble AChE-R protein. Knockdown of miR-183 expression increased SC35 protein levels in vitro, whereas overexpression of miR-183 reduced SC35 protein levels, suggesting a physiological role for miR-183 regulation under stress. We show stress-induced changes in miR-183 and miR-134 and suggest that, by regulating splicing factors and their targets, these changes modify both alternative splicing and cholinergic neurotransmission in the stressed brain

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
    corecore